Binärdarstellung, Oktal- und Hexadezimalschreibweise

Natürliche Zahlen № in Binärdarstellung

Ein digitaler Rechner kennt nur zwei logische Zustände: 0 und 1. Diese korrespondieren physikalisch mit zwei Spannungszuständen: Spannung an/Spannung aus. Auißerdem können logische Aussagen einem von zwei "Werten" zugeordnet werden: wahr oder falsch.

Aus all diesen Gründen spielt die Darstellung von Zahlen im Biärsystem eine zentrale Rolle in der Informatik. Du hast diese Darstellung von Zahlen im Binärsystem bereits in der Mittelstufe kennengelernt.

Das Binärsystem ist ein **Stellenwertsystem**, dessen Stellenwerte Zweierpotenzen entspricht:

Stelle	7	6	5	4	3	2	1	0
Wertigkeit der Stelle	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2°
Wertigkeit dezimal	128	64	32	16	8	4	2	1

Beispiel: $10100101_2 = 128_{10} + 32_{10} + 4_{10} + 1_{10} = 165_{10}$

(A1)

- Welcher Zahlbereich lässt sich so mit 8 Bit darstellen?
- Welcher Zahlbereich lässt sich so mit n Bit darstellen?
- Rechne die Zahlen vom Binärsystem in das Dezimalsystem bzw. umgekehrt um:
 - o 01011010₂
 - o 1001011₂
 - · 27₁₀
 - ° 220₁₀

Oktal- und Hexadezimalsystem

Das Oktalsystem ist ein Stellenwertsystem zur Basis 8, das Hexadezimalsystem ein Stellenwertsystem zur Basis 16

Oktalsystem						
Stelle	5	4	3	2	1	0
Wertigkeit der Stelle	8 ⁵	8 ⁴	8 ³	8 ²	8 ¹	8°
Wertigkeit dezimal	32768	4096	512	64	8	1

Hexadezimalsystem					
Stelle	4	3	2	1	0
Wertigkeit der Stelle	16 ⁴	16 ³	16 ²	16 ¹	16°
Wertigkeit dezimal	65536	4096	256	16	1

Bei Hexadezimalsystem muss die Menge der möglischen Ziffern erweitert werden, da der Wert an einer Stelle zwischen 0 und 15 betragen kann, die arabischen Ziffern jedoch nur Werte bis 9 bereitstellen. Man erweitert:

10	11	12	13	14	15
Α	В	С	D	Е	F

(A2)

- Welche Ziffern sind an den Stellen einer Oktalzahl erlaubt?
- Welche Ziffern sind an den Stellen einer Hexadezimalzahl erlaubt?
- Rechne um:
 - \circ 2AE₁₆ = ?? 10
 - ∘ 12345₈ = ?? ₁₀
 - \circ 3178₁₀ = ?? ₁₆
 - \circ 2765₁₀ = ?? 8

Oktal- und Hexadezimalsystem stellen eine "verkürzte" Binärdarstellung bereit, die es ermöglicht, binäre Zahlen schnell praktischer aufzuschreiben:

Die Ziffern von 0 bis 7 können binär in 3 Bit dargestellt werden, das heißt, jede Ziffer einer Oktalzahl entspricht 3 Bit - um von Oktal in Binär "umzuwandeln" muss man lediglich für jede oktale Ziffer 3 Bit aufschreiben und dort den Stellenwert binär eintragen: 3426₈ = 011 100 010 110₂

(A3)

- Überprüfe die Richtigkeit der "Umwandlung" aus dem Beispiel im Text, indem du Oktal- und Binärzahl in eine Dezimalzahl umwandelst.
- Mache dir klar, dass in diesem Sinne die Darstellung einer Zahl als Oktalzahl lediglich eine "verkürzte" Binärdarstellung ist.
- Wandle um (schreibe anders):
 - \circ 675421345₈ = ?? \circ
 - \circ 101111110001010₂ = ?? 8

https://info-bw.de/ Printed on 02.08.2025 21:32

From: https://info-bw.de/ -

Permanent link: https://info-bw.de/faecher:informatik:oberstufe:codierung:zahlendarstellungen:binaerdarstellung:start?rev=1663000072

Last update: **12.09.2022 16:27**

