faecher:informatik:oberstufe:kryptographie:rsaverfahren:start

Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen der Seite angezeigt.

Link zu der Vergleichsansicht

Beide Seiten, vorherige Überarbeitung Vorherige Überarbeitung
Nächste Überarbeitung
Vorherige Überarbeitung
faecher:informatik:oberstufe:kryptographie:rsaverfahren:start [07.06.2024 10:38] Frank Schiebelfaecher:informatik:oberstufe:kryptographie:rsaverfahren:start [03.02.2025 09:35] (aktuell) Frank Schiebel
Zeile 1: Zeile 1:
 ====== Das RSA Verfahren ====== ====== Das RSA Verfahren ======
  
-Um die Funktionsweise des RSA Verfahrens nachzuvollziehen, musst du dir Klartext, Geheimtext und Schlüssel nicht als Bit-Folgen wie bei AES, sondern einfach als natürliche Zahlen vorstellen. Für den Computer macht das sowieso keinen Unterschied, da dieser alle Daten als Bit-Folge abspeichert udn verarbeitet.+Um die Funktionsweise des RSA Verfahrens nachzuvollziehen, musst du dir Klartext, Geheimtext und Schlüssel nicht als Bit-Folgen wie bei AES, sondern einfach als natürliche Zahlen vorstellen. Für den Computer macht das sowieso keinen Unterschied, da dieser alle Daten als Bit-Folge abspeichert und verarbeitet.
  
 ===== Einwegfunktionen und Falltürfunktionen ===== ===== Einwegfunktionen und Falltürfunktionen =====
-Im vorigen Wiki-Abschnitt haben wir uns mit der Modulo-Rechnung beschäftigt - diese ist in der Kryptografie wichtig, da einge der Modulo-Rechenarten sind sehr** einfach durchgeführt** werden können, ihre **Umkehrung** oft aber sehr ziemlich **aufwändig** ist.+Im vorigen Wiki-Abschnitt haben wir uns mit der Modulo-Rechnung beschäftigt - diese ist in der Kryptografie wichtig, da einige der Modulo-Rechenarten sehr** einfach durchgeführt** werden können, ihre **Umkehrung** oft aber extrem **aufwändig** ist.
  
-So kann man die **einfache Rechnung als Verschlüsselung** und die **komplizierte Umkehrung als Entschlüsselung** verwenden -- allerding nur dann, wenn es bei der komplizierten Umkehrung eine "versteckte Abkürzung" gibt, die man als **Schlüssel** nehmen kann. +So kann man die **einfache Rechnung als Verschlüsselung** und die **komplizierte Umkehrung als Entschlüsselung** verwenden -- allerdings nur dann, wenn es bei der komplizierten Umkehrung eine "versteckte Abkürzung" gibt, die man als **Schlüssel** nutzen kann. 
  
 <WRAP center round tip 90%> <WRAP center round tip 90%>
Zeile 50: Zeile 50:
 Dazu benötigt man die Modulo-Rechnung aus einem der vorigen Wiki-Abschnitte: Dazu benötigt man die Modulo-Rechnung aus einem der vorigen Wiki-Abschnitte:
  
-  * Die a-te Wurzel der Zahl modulo n lässt sich leicht berechnen, wenn man φ(n) kennt und $a$ und φ(n) teilerfremd sind.  ([[..:rsamathe:start#modulo-wurzelziehen |Modulo-Wurzelziehen]])+{{:faecher:informatik:oberstufe:kryptographie:rsaverfahren:message.png  |}} 
 +  * Die e-te Wurzel der Zahl modulo n lässt sich leicht berechnen, wenn man φ(n) kennt und Hochzahl $e$ und φ(n) teilerfremd sind.  ([[..:rsamathe:start#modulo-wurzelziehen |Modulo-Wurzelziehen]])
   * φ(n) kann man leicht berechnen, wenn es sich bei n um das Produkt zweier Primzahlen p und q handelt. Dann gilt φ(n)=(p-1)·(q-1) ([[..:rsamathe:start#modulo-wurzelziehen |Modulo-Wurzelziehen]])   * φ(n) kann man leicht berechnen, wenn es sich bei n um das Produkt zweier Primzahlen p und q handelt. Dann gilt φ(n)=(p-1)·(q-1) ([[..:rsamathe:start#modulo-wurzelziehen |Modulo-Wurzelziehen]])
  
  • faecher/informatik/oberstufe/kryptographie/rsaverfahren/start.1717756690.txt.gz
  • Zuletzt geändert: 07.06.2024 10:38
  • von Frank Schiebel