Ein populäres Beispiel für rekursive Algorithmen ist die Fakultätsfunktion:
5! = 5*4*3*2*1
fakultaet(5) = 120
fakultaet(3) = 3*2*1 = 6
(A1) Iterativ
Implementiere in BlueJ eine iterative Version der Fakultätsfunktion, die als Argument die Zahl entgegennimmt, deren Fakultät berechnet werden soll.
(A2) Rekursiv
Implementiere anhand des folgenden Pseudocodes eine rekursive Version fak_rekursiv
.
fak_rekursiv(int n):
wenn n=1 oder n=0:
return 1
sonst:
return n*fak_rekursiv(n-1)
Was passiert | Wie sieht der Stack aus? |
|
fak_rekursiv(3) wird aufgerufen.
Auf dem Stack wird Speicher für diesen Aufruf reserviert. Es gibt keine Rücksprungadresse.
Innerhalb dieses Aufrufs wird fak_rekursiv(2) (nächster Schtritt) aufgerufen,
da die Fallunterscheidung nicht zum Basisfall
führt sondern zum Rekursionsfall. | |
|
fak_rekursiv(2) wird aus dem vorhergehenden Aufruf heraus aufgerufen.
Auf dem Stack wird Speicher für diesen Aufruf reserviert: Wichtig: Jeder Aufruf
hat seinen eigenen Speicherbereich
für Variablen, d.h. jeder Aufruf
von fak_rekursiv hat sein eigenes n auf die die anderen Aufrufe
nicht zugreifen können.
Die Rücksprungadresse befindet sich jetzt im vorigen Aufruf
der rekursiven Methode selbst.
Das ist anders, als beim ersten Beispiel für den Call-Stack!
Da erneut der Rekursionsfall eintritt,
wird aus diesem Aufruf heraus fak_rekursiv(1) aufgerufen. | |
|
fak_rekursiv(1) wird aus dem vorhergehenden Aufruf heraus aufgerufen.
Auf dem Stack wird Speicher für diesen Aufruf reserviert.
Die Rücksprungadresse befindet sich wiederum im vorigen Aufruf der rekursiven Methode selbst.
Jetzt tritt der Basisfall ein! | |
|
Dies ist der erste Aufruf, der vollständig abgeschlossen ist.
Es wird kein neuer Aufruf von fak_rekursiv auf den Call-Stack gelegt, sondern
der Aufruf von fak_rekursiv(1) endet damit, dass 1 an die
aufrufende Stelle zurückgegeben wird und die zum Aufruf gehörenden
Daten vom Stack entfernt werden. | |
|
Damit hat der Aufruf von fak_rekursiv(2) alle Informationen,
um abgeschlossen zu werden:
Der Ausdruck n*fak_rekursiv(n-1) kann jetzt zu 2*1 ausgewertet und an die
aufrufende Stelle zurückgegeben werden.
Die zum Aufruf gehörenden
Daten werden vom Stack entfernt. | |
|
Jetzt hat auch der Aufruf von fak_rekursiv(3) alle Informationen,
um abgeschlossen zu werden:
Der Ausdruck n*fak_rekursiv(n-2) kann jetzt zu 3*2 ausgewertet
und an die aufrufende Stelle zurückgegeben werden.
Die zum Aufruf gehörenden Daten werden vom Stack entfernt.
Der Call-Stack ist leer, der Aufruf der Methode beendet. | |